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In a recent article, Soo (1976) presents a set of equations for the one-dimensional adiabatic 
motion of two-phase single-component flow. The purpose of this note is to examine the validity 
of these equations in a specific application and offer an explanation for the resulting in- 
consistencies. 

The continuity equation for one phase of a two-phase mixture is presented by Soo as 

aplat ~~x (ptul) = Fl [1] 

where pt is the bulk density (mass per unit volume), u~ the mean velocity and Ft the generation 
rate of phase 1 per unit volume of mixture. The continuity equation for the second phase is the 
same as [1] with the subscripts replaced by 2 in all cases. Addition of the continuity equations 
yields the mixture continuity equation: 

ap,, , 9  
+ ~ (pmUm) = 0 [ 2 ]  

at O A  

where the mixture density and velocity are defined by 

and 

p,. = p~ + P2 [3a] 

pmldm = plUl + p2U2. [3b] 

The summation of the generation terms gives zero, since Ft is equal to -F2. 
The momentum equation for phase 1 is presented as 

aul aul 
p , - ~ +  p,u, ~-xx ----ck, aP + l,2+ V,2 ax [41 

where ok, is the volume fraction of phase 1 and P is the system pressure. The term I~2 is defined 
a s :  

I I : = p - ~  (ut-u2)Ft+ c~ r Pt~2 "u [5] 

and identified as the "inertial interaction" force per unit volume of mixture. The last term, Vm 

tThis work was performed during the author's sabbatical leave at Lawrence Livermore Laboratory, Livermore, CA. 
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is referred to as the viscous interaction term and defined as: 

Vl2 = p1FI2(U2- u0 [6] 

where FI2 is the inverse of the relaxation time for momentum transfer from phase 2 to phase I. 
The momentum equation for the second phase is obtained by interchanging the subscripts in 
[4]-[6]. By adding the momentum equations for each phase, Soo (1976) obtains the mixture 
momentum equation in the form: 

0 (p, ,um)+~x(PmU, 2)_  aP [7] 

or, by subtraction of the mixture continuity equation [2], 

Oum Oum = OP 
p~, -~- + p,.u,, ax ax " [8] 

For an application of these equations, consider the vapor-droplet flow field shown in figure 
I. The droplets are injected at a steady rate to produce a one-dimensional, steady droplet-flow 
field. The evaporating droplets travel through the vapor and impact on the wall which 
continuously absorbs all the liquid, preventing any liquid accumulation on the wall, but which is 
impervious to the vapor phase. The vapor is free to flow out to the left past the droplet injection 
ports. The vapor is identified as phase 1 and the disperse phase (droplets) as phase 2. The 
suspension is assumed to be dilute; i.e. p2 '~ pro, according to Soo (1976). 

The portion of the flow field under study lies between the two stations indicated on the 
figure. Station b is removed more than one droplet diameter away from the wall so that the 
droplet has not physically contacted the wall while passing the station. Thus there is no need to 
include a mechanical force on the droplet due to the wall in the droplet momentum equation. 

Assuming Soo's equations are time-smoothed in the usual sense (Bird et al. 1960) and mass 
transfer occurs locally at a steady rate, the flow field between stations a and b is steady. The 
mixture continuity equation becomes 

plUl + P2//2 = Prelim = const. [9] 

Because the wall is impervious to the vapor, u~ must always be negative, so 

#mUm < P2U2 [10] 
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Figure 1. Schematic diagram of example flow field. 
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um < - -  u2. [1 1] 
pl 

The maximum speed for ul is obtained by complete evaporation of the droplets before 
reaching station b which, upon evaluating the constant in [9] at the wall, leads to the following 
continuity equation: 

or 

PlUl +p2U2 = 0 [12] 

/AI = - p 2  [13] 
Pl u2. 

Because the mixture is dilute, one concludes 

lull ~ lu21. [14] 

Substituting [10] and [11] into Soo's mixture momentum equation, [8], indicates 

dP P2 du2 [15] 
d-'-x ~ p2u2 p~ d-"-x " 

For a very dilute suspension, the inertial interaction term for the disperse phase simplifies to 

I21 ~ - (u2 - ul)F2 + d [p2(ul - u2) 2] [16] 

which, for [ud "~ lu21, further reduces to 

d 2 
121 ~ -- i/2F2 + dx (P2u2). [17] 

Upon subtracting the continuity equation for phase 2, 

d (p2u2) = F2 [18] 

the inertial interaction term finally simplifies to 

du2 
I21 ~ p2U2 "~X " [19] 

Substituting [15] and [19] into Soo's momentum equation for the disperse phase yields 

/)2/42 "~xdu2 ~ 4,2[~11 ][~2U 2 ~X2[_ P2U2 ~X2 ..}. p2F2,(U,-U2) . [20] 

Realizing that the volume fraction occupied by the droplets is 

4'2 < P2 [21] 
pl 
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and noting that the droplet acceleration and inertial interaction terms cancel, one concludes 

F,2(ul - u2) ~- O. [22] 

Because Ft2 cannot be zero, it must follow 

ul ~ u2. [231 

This result is inconsistent with [14]. 
The inconsistency in Soo's equations arises due to the presence of the inertial interaction 

terms in the phase equations. It is my contention that the correct form of the momentum 
equation for the disperse phase (Drew 1971, Crowe 1977), assuming locally uniform disperse- 
phase and uniform momentum etilux from the evaporating droplets, is 

0u2 Ou2 O P + M +  V 
Pz--d{+ 02u2-~  = - ~ Ox 

[24] 

where M is the "virtual-mass" term and V the viscous interaction force.t The virtual-mass 
term for a spherical droplet (Basset 1888) is given by 

M =O.5p2[~] d ( u , -  uz) [25] 

where ~ and t~2 are material density of each phase (using Soo's terminology). The viscous 
interaction term, V, is defined as the force per unit volume of mixture as the result of viscous 
effects acting on the disperse phase. 

The momentum equation for the disperse phase can be written in conservative form by 
multiplying the continuity equation for the disperse phase by u2 and adding the result to [24], 
yielding: 

0 2 - ~b2 0-~-P + M + V +  u2F2 
~ t ( m u 9  + ~ (mu2) = ax [26] 

The corresponding momentum equation for the vapor phase is (Crowe 1977): 

0 + 0 2 OP 
~ ( p , u , )  ~ ( p , u , ) = - ~ , ~ - x - M - V + u 2 F ,  [27] 

where M and V are the same terms defined above. 
Adding the momentum equation for each phase, [26] and [27], yields the mixture momentum 

equation: 

o • .+  o OP 
~'~ (plUl + p2U2) ~-~ (plu12 + p2tt22) = cgX" [28] 

This equation may be written in terms of the mixture quantities as follows: 

0 + 0 2 + a [ PlPz ] ~gP 
~(p,.u,.) 7x(P,.u,.) ~xLO-~o2(ul-uz)2]-  Ox [29] 

t lf  the local velocity of the disperse phase is not uniform and one chooses to use the average disperse-phase velocity, 
an additional term appears (Drew 1971) which is similar to Soo's inertial interaction term but which is based on the average 
velocity of the disperse phase rather than that of the mixture. 
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which, using [2], becomes 

du, + Ou,,, + O_.. [p,p2 (U,- u2) 2] : ae 
Pm - - ~  pmUm OX 3X L P,. ax " [301 

Thus one concludes that a term similar to Soo's inertial interaction term should appear in the 
mixture momentum equation and not in the separate phase equations. Applying [30] to the 
vapor--droplet flow field discussed above leads to 

d 2 dP 
~-~(p2u2)--- dx [31] 

which states that the loss of droplet momentum dur to aerodynamic drag is balanced by a 
pressure gradient. 

The "inertial interaction" term in [30] is directly equivalent to the "apparent stress" arising 
from diffusion encountered in the momentum equations for a mixture of gaseous species 
(Penner 1957; Truesdell & Toupin 1960; Woods 1975). In the latter the "inertial interaction" 
term is frequently combined with the shear-stress tensor (Penner 1957). This practice can lead 
to significant difficulties in the case of disperse two-phase flows. 
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REPLY TO PROFESSOR CROWE: "ON SOO'S EQUATIONS, etc." 

S. L. Soo 
Department of Mechanical and Industrial Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, U.S.A. 

I am honored by Professor Crowe's attention to my work. It seems that his proving a 
fundamental relation via a specific example is contrary to the deductive nature of mechanics. 
However, some insight is actually gained when his example is solved correctly. Professor 
Crowe's finding appears to be a result of his liberal use of "--- 's". 

Professor Crowe's present example could have many interesting conditions depending on 


